Mad vägda glidande medelvärde prognos
3 Förstå prognosnivåer och metoder Du kan generera både prognoser för detaljinfo och sammanfattningar (produktlinje) som speglar produktbehovsmönster. Systemet analyserar tidigare försäljning för att beräkna prognoser genom att använda 12 prognosmetoder. Prognoserna innehåller detaljerad information på objektnivå och högre nivåinformation om en filial eller företaget som helhet. 3.1 Prognos för prestationsutvärderingskriterier Beroende på valet av bearbetningsalternativ och trender och mönster i försäljningsdata, utförs vissa prognosmetoder bättre än andra för en given historisk dataset. En prognosmetod som är lämplig för en produkt kanske inte är lämplig för en annan produkt. Det kan hända att en prognosmetod som ger goda resultat i ett skede av en produkts livscykel är lämplig under hela livscykeln. Du kan välja mellan två metoder för att utvärdera nuvarande prestanda för prognosmetoderna: Procent av noggrannhet (POA). Medel absolut avvikelse (MAD). Båda dessa prestationsbedömningsmetoder kräver historiska försäljningsdata under en period som du anger. Denna period kallas en uthållningsperiod eller period med bästa passform. Uppgifterna under denna period används som utgångspunkt för att rekommendera vilken prognosmetod som ska användas vid nästa prognosprojektion. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. 3.1.1 Bästa passform Systemet rekommenderar den bästa anpassningsprognosen genom att använda de valda prognosmetoderna till tidigare försäljningsorderhistorik och jämföra prognosimuleringen till den aktuella historiken. När du genererar en bästa anpassningsprognos jämförs systemet faktiska försäljningsorderhistorier med prognoser för en viss tidsperiod och beräknar hur exakt varje olika prognosmetod förutspådde försäljningen. Då rekommenderar systemet att den mest exakta prognosen är den bästa passformen. Denna grafik illustrerar bästa passformsprognoser: Figur 3-1 Bästa passformsprognos Systemet använder denna stegsekvens för att bestämma den bästa passformen: Använd varje specificerad metod för att simulera en prognos för hållbarhetsperioden. Jämför den faktiska försäljningen till de simulerade prognoserna för hållbarhetsperioden. Beräkna POA eller MAD för att bestämma vilken prognosmetod som ligger närmast den tidigare faktiska försäljningen. Systemet använder antingen POA eller MAD, baserat på de behandlingsalternativ som du väljer. Rekommendera en lämplig prognos för POA som är närmast 100 procent (över eller under) eller MAD som är närmast noll. 3.2 Prognosmetoder JD Edwards EnterpriseOne Forecast Management använder 12 metoder för kvantitativ prognos och anger vilken metod som passar bäst för prognosläget. Detta avsnitt diskuterar: Metod 1: Procent under förra året. Metod 2: Beräknad procentsats under förra året. Metod 3: Förra året till det här året. Metod 4: Flyttande medelvärde. Metod 5: Linjär approximation. Metod 6: Minsta kvadratregression. Metod 7: Tillnärmning av andra graden. Metod 8: Flexibel metod. Metod 9: Viktat rörande medelvärde. Metod 10: Linjär utjämning. Metod 11: Exponentiell utjämning. Metod 12: Exponentiell utjämning med trend och säsonglighet. Ange den metod som du vill använda i behandlingsalternativen för prognosgenereringsprogrammet (R34650). De flesta av dessa metoder ger begränsad kontroll. Exempelvis kan vikten på senaste historiska data eller datumintervallet för historiska data som används i beräkningarna specificeras av dig. Exemplen i guiden anger beräkningsförfarandet för var och en av de tillgängliga prognosmetoderna, med en identisk uppsättning historiska data. Metodsexemplen i guiden använder en del eller alla dessa datasatser, vilket är historiska data från de senaste två åren. Prognosprojektionen går in i nästa år. Försäljningshistorikdata är stabila med små säsongsökningar i juli och december. Detta mönster är karakteristiskt för en mogen produkt som kan närma sig föryngring. 3.2.1 Metod 1: Procent under förra året Denna metod använder Formuläret Procent Över fjolårets formel för att multiplicera varje prognosperiod med angiven procentuell ökning eller minskning. För att kunna förutse efterfrågan kräver denna metod antalet perioder för bästa passform plus ett års försäljningshistoria. Denna metod är användbar för att prognostisera efterfrågan på säsongsvaror med tillväxt eller minskning. 3.2.1.1 Exempel: Metod 1: Procent under fjolåret Procenten över fjolårets formel multiplicerar försäljningsdata från föregående år med en faktor du anger och sedan projekt som resulterar under nästa år. Denna metod kan vara användbar vid budgetering för att simulera påverkan av en viss tillväxt eller när försäljningshistoriken har en betydande säsongskomponent. Prognosspecifikationer: Multiplikationsfaktor. Ange till exempel 110 i bearbetningsalternativet för att öka de tidigare årens försäljningshistorikdata med 10 procent. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform) som du anger. Denna tabell är historia som används i prognosberäkningen: Februari-prognosen motsvarar 117 gånger 1,1 128,7 avrundad till 129. Marsprognosen är 115 gånger 1,1 126,5 avrundad till 127. 3.2.2 Metod 2: Beräknad procentsats under förra året Denna metod använder beräknad procentsats över Förra året formel för att jämföra den tidigare försäljningen av specificerade perioder till försäljning från samma perioder föregående år. Systemet bestämmer en procentuell ökning eller minskning, och multiplicerar sedan varje period med procentandelen för att bestämma prognosen. För att kunna förutse efterfrågan kräver denna metod antalet perioder med orderorderhistorik plus ett års försäljningshistorik. Denna metod är användbar för att förutspå kortfristig efterfrågan på säsongsvaror med tillväxt eller nedgång. 3.2.2.1 Exempel: Metod 2: Beräknad procentsats under förra året Beräknad procentsats Över fjolårets formel multiplicerar försäljningsdata från föregående år med en faktor som beräknas av systemet och sedan projekterar det resultatet för nästa år. Den här metoden kan vara användbar för att påvisa inverkan på att förlänga den senaste tillväxttakten för en produkt till nästa år samtidigt som ett säsongsmönster som finns i försäljningshistoriken bevaras. Prognosspecifikationer: Omsättning av försäljningshistoria som ska användas vid beräkning av tillväxten. Till exempel, specificera n är lika med 4 i bearbetningsalternativet för att jämföra försäljningshistorik för de senaste fyra perioderna till samma fyra perioder föregående år. Använd det beräknade förhållandet för att göra projiceringen för nästa år. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen, givet n 4: Februari-prognosen motsvarar 117 gånger 0,9766 114,26 avrundad till 114. Marsprognosen motsvarar 115 gånger 0,9766 112,31 avrundad till 112. 3.2.3 Metod 3: Förra året till i år Denna metod använder Förra årets försäljning för nästa års prognos. För att prognostisera efterfrågan kräver denna metod det antal perioder som passar bäst, plus ett års orderorderhistorik. Denna metod är användbar för att förutse efterfrågan på mogna produkter med efterfrågan på efterfrågan eller säsongens efterfrågan utan en trend. 3.2.3.1 Exempel: Metod 3: Förra året till det här året Förra året till årets formel kopieras försäljningsdata från föregående år till nästa år. Denna metod kan vara användbar vid budgetering för att simulera försäljningen på nuvarande nivå. Produkten är mogen och har ingen trend på lång sikt, men det kan finnas ett betydande säsongsmönster. Prognosspecifikationer: Ingen. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januari-prognosen motsvarar januari i fjol med ett prognosvärde på 128. Februari-prognosen motsvarar februari förra året med ett prognosvärde på 117. Marsprognosen är samma som i mars i fjol med ett prognostiskt värde av 115. 3.2.4 Metod 4: Flyttande medelvärde Med denna metod används den rörliga genomsnittsformeln för att medge det angivna antalet perioder för att projicera nästa period. Du bör räkna om det ofta (månadsvis eller åtminstone kvartalsvis) för att återspegla förändrad efterfråganivå. För att prognostisera efterfrågan kräver denna metod det antal perioder som passar bäst, plus antalet perioder med orderorderhistorik. Denna metod är användbar för att förutse efterfrågan på mogna produkter utan en trend. 3.2.4.1 Exempel: Metod 4: Flytta genomsnittligt rörligt medelvärde (MA) är en populär metod för att medelvärda resultaten av den senaste försäljningshistoriken för att bestämma en prognos på kort sikt. MA prognosmetoden ligger bakom trenderna. Prognosfel och systematiska fel uppstår när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter än för produkter som ligger i livscykelens tillväxt eller föråldrade stadier. Prognosspecifikationer: n är det antal försäljningsperioder som ska användas i prognosberäkningen. Ange till exempel n 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Det resulterar i en stabil prognos, men är långsamt att känna igen skift i försäljningsnivån. Omvänt är ett litet värde för n (som 3) snabbare att svara på förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Erforderlig försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Februari-prognosen motsvarar (114 119 137 125) 4 123,75 avrundad till 124. Marsprognosen är lika med (119 137 125 124) 4 126.25 avrundad till 126. 3.2.5 Metod 5: Linjär approximation Denna metod använder den linjära approximationsformeln för att beräkna en trend från antalet perioder av orderorderhistorik och att projicera denna trend till prognosen. Du bör omräkna trenden månadsvis för att upptäcka förändringar i trender. Denna metod kräver antalet perioder med bäst passform plus antal specificerade perioder av orderorderhistorik. Denna metod är användbar för att prognostisera efterfrågan på nya produkter eller produkter med konsekventa positiva eller negativa trender som inte beror på säsongsvariationer. 3.2.5.1 Exempel: Metod 5: Linjär approximation Linjär approximation beräknar en trend som baseras på två försäljningshistoriska datapunkter. Dessa två punkter definierar en rak trendlinje som projiceras in i framtiden. Använd denna metod med försiktighet, eftersom långdistansprognoser utnyttjas av små förändringar på bara två datapunkter. Prognosspecifikationer: n motsvarar datapunktet i försäljningshistorik som jämförs med den senaste datapunkten för att identifiera en trend. Ange till exempel n 4 för att använda skillnaden mellan december (senaste uppgifterna) och augusti (fyra perioder före december) som grund för beräkning av trenden. Minsta obligatoriska försäljningshistorik: n plus 1 plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januariprognos december förra året 1 (Trend), vilket är 137 (1 gånger 2) 139. Februari prognos december förra året 1 (Trend), vilket är 137 (2 gånger 2) 141. Marsprognos december förra året 1 (Trend), som är lika med 137 (3 gånger 2) 143. 3.2.6 Metod 6: Minsta kvadreregression Metoden för minsta kvadratregression (LSR) härleder en ekvation som beskriver ett raklinjeläge mellan historiska försäljningsdata och tidens gång. LSR passar en linje till det valda datamängden så att summan av kvadraterna för skillnaderna mellan de faktiska försäljningsdatapunkterna och regressionslinjen minimeras. Prognosen är en projicering av denna raka linje i framtiden. Denna metod kräver försäljningsdatahistorik för den period som representeras av antalet perioder som passar bäst och det angivna antalet historiska datoperioder. Minimikravet är två historiska datapunkter. Denna metod är användbar för att förutse efterfrågan när en linjär trend är i data. 3.2.6.1 Exempel: Metod 6: Minsta kvadratregression Linjär regression eller LAST-kvadratregression (LRR) är den mest populära metoden för att identifiera en linjär trend i historiska försäljningsdata. Metoden beräknar värdena för a och b som ska användas i formeln: Denna ekvation beskriver en rak linje, där Y representerar försäljning och X representerar tid. Linjär regression är långsam att känna igen vändpunkter och stegfunktionsskift i efterfrågan. Linjär regression passar en rak linje till data, även om data är säsongsbetonad eller bättre beskrivs av en kurva. När försäljningshistorikdata följer en kurva eller har ett starkt säsongsmönster uppträder prognosfel och systematiska fel. Prognosspecifikationer: n är lika med försäljningshistorikperioderna som kommer att användas vid beräkning av värdena för a och b. Ange till exempel n 4 för att använda historiken från september till december som grund för beräkningarna. När data är tillgänglig skulle en större n (såsom n 24) normalt användas. LSR definierar en rad för så få som två datapunkter. För detta exempel valdes ett litet värde för n (n 4) för att minska de manuella beräkningarna som krävs för att verifiera resultaten. Minimikrav på försäljningshistorik: n perioder plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Marsprognosen motsvarar 119,5 (7 gånger 2,3) 135,6 avrundad till 136. 3.2.7 Metod 7: Andra grader Approximation För att projicera prognosen använder denna metod andra grader approximationsformeln för att plotta en kurva Det är baserat på antalet försäljningsperioder. Denna metod kräver antalet perioder som passar bäst, plus antalet perioder av orderorderhistorikstider tre. Denna metod är inte användbar för att prognostisera efterfrågan på en långsiktig period. 3.2.7.1 Exempel: Metod 7: Tillnärmning av andra grader Linjär regression bestämmer värdena för a och b i prognosformeln Y a b X med målet att anpassa en rak linje till försäljningshistorikdata. Andra grader Approximation är liknande, men den här metoden bestämmer värdena för a, b och c i den här prognosformeln: Y a b X c X 2 Syftet med denna metod är att passa en kurva till försäljningshistorikdata. Denna metod är användbar när en produkt är i övergången mellan livscykelstadier. Till exempel, när en ny produkt flyttar från introduktion till tillväxtstadier, kan försäljningsutvecklingen accelereras. På grund av den andra orderperioden kan prognosen snabbt närma sig oändligheten eller släppa till noll (beroende på om koefficienten c är positiv eller negativ). Denna metod är endast användbar på kort sikt. Prognosspecifikationer: Formeln hitta a, b och c för att passa en kurva till exakt tre punkter. Du anger n, antalet tidsperioder för data som ackumuleras i var och en av de tre punkterna. I detta exempel, n 3. Faktiska försäljningsdata för april till juni kombineras till första punkten, Q1. Juli till september läggs samman för att skapa Q2 och oktober till december summa till Q3. Kurvan är monterad på de tre värdena Q1, Q2 och Q3. Erforderlig försäljningshistorik: 3 gånger n perioder för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Maj) (Jun), vilket motsvarar 125 122 137 384 Q2 (Jul) (Aug) (Sep) vilket är lika med 140 129 131 400 Q3 (okt) (nov) (dec) vilket motsvarar 114 119 137 370 Nästa steg innebär att de tre koefficienterna a, b och c används för att användas i prognosformeln Y ab X c X 2. Q1, Q2 och Q3 presenteras på grafiken, där tiden är planerad på den horisontella axeln. Q1 representerar total historisk försäljning för april, maj och juni och är planerad till X 1 Q2 motsvarar juli till september Q3 motsvarar oktober till december och Q4 representerar januari till mars. Figur 3-2 Plottning Q1, Q2, Q3 och Q4 för approximering av andra grader Tre ekvationer beskriver de tre punkterna på diagrammet: (1) Q1, Q2, Q3 och Q4 för andra graders approximation: Figur 3-2 en bX cX 2 där X 1 (Q1 abc) (2) Q2 en bX cX2 där X2 (Q2 a2b4c) (3) Q3 en bX cX2 där X3 (Q3 a 3b 9c) Lös de tre ekvationerna samtidigt för att hitta b, a och c: Subtrahera ekvation 1 (1) från ekvation 2 (2) och lösa för b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersätt denna ekvation för b till ekvation (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Äntligen ersätt dessa ekvationer för a och b till ekvation (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1c (Q3 ndash Q2) (Q1 ndash Q2) 2 Den andra graden approximationsmetoden beräknar a, b och c enligt följande: en Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda sh 384) ndash (3 gånger ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 Detta är en beräkning av approximationsprognos för andra graden: Y a bX cX 2 322 85X (ndash23) (X 2) När X 4, Q4 322 340 ndash 368 294. Prognosen motsvarar 294 3 98 per period. När X 5, Q5 322 425 ndash 575 172. Prognosen är 172 3 58,33 avrundad till 57 per period. När X 6, Q6 322 510 ndash 828 4. Prognosen är lika med 4 3 1,33 avrundad till 1 per period. Detta är prognosen för nästa år, förra året till det här året: 3.2.8 Metod 8: Flexibel metod Med den här metoden kan du välja det passande antal perioder av orderorderhistorik som börjar n månader före prognosens startdatum och till tillämpa en procentuell ökning eller minskning multiplikationsfaktor för att ändra prognosen. Denna metod liknar Metod 1, Procent över förra året, förutom att du kan ange antalet perioder som du använder som bas. Beroende på vad du väljer som n kräver denna metod perioder som passar bäst och antalet perioder av försäljningsdata som anges. Denna metod är användbar för att förutse efterfrågan på en planerad trend. 3.2.8.1 Exempel: Metod 8: Flexibel metod Den flexibla metoden (Procent över n månader före) liknar Metod 1, Procent över förra året. Båda metoderna multiplicerar försäljningsdata från en tidigare tidsperiod med en faktor som specificeras av dig och sedan projekterar det resultatet i framtiden. I Procenten över senaste årmetoden är projiceringen baserad på data från samma period föregående år. Du kan också använda den flexibla metoden för att ange en tidsperiod, annan än samma period det senaste året, för att använda som underlag för beräkningarna. Multiplikationsfaktor. Ange till exempel 110 i bearbetningsalternativet för att öka tidigare försäljningshistorikdata med 10 procent. Basperiod Till exempel medför n 4 att den första prognosen baseras på försäljningsdata i september förra året. Minimikrav på försäljningshistorik: Antalet perioder tillbaka till basperioden plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Den här tabellen är historia som används i prognosberäkningen: 3.2.9 Metod 9: Viktad Flyttande Medeltal Den viktade Flytta genomsnittliga formeln liknar Metod 4, Flyttande medelformel, eftersom den genomsnittlig försäljningshistorik för föregående månader för att projicera nästa månads försäljningshistorik. Med denna formel kan du dock tilldela vikter för varje tidigare period. Denna metod kräver antalet viktiga perioder som valts plus antal perioder som passar bäst i data. På samma sätt som rörande medelvärde ligger denna metod bakom efterfrågan trender, så den här metoden rekommenderas inte för produkter med starka trender eller säsongsmässiga egenskaper. Denna metod är användbar för att prognostisera efterfrågan på mogna produkter med en efterfrågan som är relativt nivå. 3.2.9.1 Exempel: Metod 9: Vägt rörlig medelvärde Den viktade rörliga genomsnittsmetoden (WMA) liknar Metod 4, Moving Average (MA). Du kan dock tilldela ojämna vikter till historiska data när du använder WMA. Metoden beräknar ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Nyare data tilldelas vanligtvis en större vikt än äldre data, så WMA är mer mottaglig för skift i försäljningsnivån. Emellertid uppstår prognoser och systematiska fel när produktförsäljningshistoriken uppvisar starka trender eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter än för produkter i livscykelns tillväxt eller förälskelse. Antalet försäljningshistorikperioder (n) som ska användas i prognosberäkningen. Ange till exempel n 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Ett sådant värde ger en stabil prognos, men det är långsamt att känna igen skift i försäljningsnivån. Omvänt svarar ett litet värde för n (som 3) snabbare till förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Det totala antalet perioder för behandlingsalternativet rdquo14 - perioder till includerdquo bör inte överstiga 12 månader. Den vikt som tilldelas var och en av de historiska dataperioderna. De tilldelade vikterna måste uppgå till 1,00. Till exempel när n 4 tilldelar vikter av 0,50, 0,25, 0,15 och 0,10 med de senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januari-prognosen motsvarar (131 gånger 0,10) (114 gånger 0,15) (119 gånger 0,25) (137 gånger 0,50) (0,10 0,15 0,25 0,50) 128,45 avrundad till 128. Februari-prognosen motsvarar (114 gånger 0,10) (119 gånger 0,15) (128 gånger 0,25) (128 gånger 0,25) (128 gånger 0,50) 1 128,45 avrundad till 128. 3.2.10 Metod 10: Linjär utjämning Denna metod beräknar ett vägt genomsnitt av tidigare försäljningsdata. I beräkningen använder denna metod antalet perioder av orderorderhistorik (från 1 till 12) som anges i behandlingsalternativet. Systemet använder en matematisk progression för att väga data i intervallet från den första (minsta vikten) till den slutliga (mest vikt). Då projicerar systemet denna information till varje period i prognosen. Denna metod kräver att månaderna bäst passar plus försäljningsorderhistoriken för antalet perioder som anges i bearbetningsalternativet. 3.2.10.1 Exempel: Metod 10: Linjär utjämning Denna metod liknar Metod 9, WMA. I stället för att godtyckligt tilldela vikter till historiska data används en formel för att tilldela vikter som faller linjärt och summan till 1,00. Metoden beräknar sedan ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Liksom alla linjära glidande medelprognostekniker förekommer prognosfel och systematiska fel när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för korta prognoser för mogna produkter än för produkter i livscykelns tillväxt eller fördjupning. n motsvarar antalet försäljningsperioder som ska användas i prognosberäkningen. Till exempel, specificera n är lika med 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som grund för projiceringen till nästa tidsperiod. Systemet tilldelar automatiskt vikterna till historiska data som avtar linjärt och summerar till 1,00. Till exempel, när n är lika med 4, tilldelar systemet vikter av 0,4, 0,3, 0,2 och 0,1, med den senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: 3.2.11 Metod 11: Exponentiell utjämning Denna metod beräknar ett jämnt medelvärde som blir en uppskattning som representerar den allmänna försäljningsnivån över de valda historiska datoperioderna. Denna metod kräver försäljningsdatahistorik för den tidsperiod som representeras av antalet perioder som passar bäst och antalet historiska datoperioder som anges. Minimikravet är två historiska datoperioder. Denna metod är användbar för att prognostisera efterfrågan när ingen linjär trend är i data. 3.2.11.1 Exempel: Metod 11: Exponentiell utjämning Denna metod liknar metod 10, linjär utjämning. Vid linjär utjämning tilldelar systemet vikter som avviker linjärt till historiska data. Vid exponentiell utjämning tilldelar systemet vikter som exponentiellt sönderfall. Ekvationen för exponentiell utjämningsprognos är: Prognos alfa (Tidigare verklig försäljning) (1 ndashalpha) (Tidigare prognos) Prognosen är ett vägt genomsnitt av den faktiska försäljningen från föregående period och prognosen från föregående period. Alpha är vikten som tillämpas på den faktiska försäljningen under föregående period. (1 ndash alfa) är den vikt som tillämpas på prognosen för föregående period. Värdena för alfaintervallet från 0 till 1 och faller vanligen mellan 0,1 och 0,4. Summan av vikterna är 1,00 (alfa (1 ndash alfa) 1). Du bör tilldela ett värde för utjämningskonstanten, alfa. Om du inte tilldelar ett värde för utjämningskonstanten beräknar systemet ett antaget värde som är baserat på antalet perioder av försäljningshistorik som anges i bearbetningsalternativet. alfa är lika med utjämningskonstanten som används för att beräkna det släta genomsnittet för den allmänna nivån eller storleken på försäljningen. Värdena för alfabetik från 0 till 1. n är lika med utbudet av försäljningshistorikdata som ingår i beräkningarna. I allmänhet är ett års försäljningshistorikdata tillräckligt för att uppskatta den allmänna försäljningsnivån. För detta exempel valdes ett litet värde för n (n 4) för att minska de manuella beräkningarna som krävs för att verifiera resultaten. Exponentiell utjämning kan generera en prognos som baseras på så lite som en historisk datapunkt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: 3.2.12 Metod 12: Exponentiell utjämning med trend och säsonglighet Denna metod beräknar en trend, ett säsongsindex och ett exponentiellt jämnt medelvärde från försäljningsorderhistoriken. Systemet tillämpar sedan en prognos av trenden mot prognosen och justerar för säsongsindex. Denna metod kräver antalet perioder som bäst passar plus två års försäljningsdata, och är användbar för objekt som har både trend och säsong i prognosen. Du kan ange alfa - och beta-faktorn, eller få systemet att beräkna dem. Alfa - och beta-faktorer är den utjämningskonstant som systemet använder för att beräkna det jämnvärda genomsnittet för den allmänna nivån eller storleken på försäljningen (alfa) och trendkomponenten i prognosen (beta). 3.2.12.1 Exempel: Metod 12: Exponentiell utjämning med trend och säsonglighet Denna metod liknar Metod 11, Exponentiell utjämning, genom att ett jämnat medel beräknas. Metod 12 innehåller emellertid också en term i prognosekvationen för att beräkna en jämn trend. Prognosen består av ett jämn genomsnitt som justeras för en linjär trend. När det anges i bearbetningsalternativet justeras prognosen också för säsongsmässigt. Alpha motsvarar utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Värden för alfabetik från 0 till 1. Beta är lika med utjämningskonstanten som används vid beräkning av det jämnde genomsnittet för trendkomponenten i prognosen. Värden för betavärdet från 0 till 1. Om ett säsongsindex används för prognosen. Alfa och beta är oberoende av varandra. De behöver inte uppgå till 1,0. Minimikrav på försäljningshistoria: Ett år plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). När två eller flera års historisk data är tillgänglig använder systemet två års data i beräkningarna. Metod 12 använder två exponentiala utjämningsekvationer och ett enkelt medelvärde för att beräkna ett jämnt medelvärde, en jämn trend och ett enkelt genomsnittligt säsongsindex. Ett exponentiellt slätat medelvärde: En exponentiellt jämn trend: Ett enkelt genomsnittligt säsongsindex: Figur 3-3 Enkelt medelstadsindex Indexet beräknas sedan med hjälp av resultaten av de tre ekvationerna: L är årstidens längd (L är 12 månader eller 52 veckor). t är den aktuella tidsperioden. m är antalet tidsperioder i prognosens framtid. S är den multiplikativa säsongsjusteringsfaktorn som indexeras till lämplig tidsperiod. Denna tabell visar historiken som används i prognosberäkningen: Det här avsnittet ger en översikt över prognosutvärderingar och diskuterar: Du kan välja prognosmetoder för att generera så många som 12 prognoser för varje produkt. Varje prognosmetod kan skapa en något annorlunda projicering. När tusentals produkter prognostiseras är ett subjektivt beslut opraktiskt när det gäller vilken prognos som ska användas i planerna för varje produkt. Systemet utvärderar automatiskt prestanda för varje prognosmetod som du väljer och för varje produkt som du förutspår. Du kan välja mellan två prestandakriterier: MAD och POA. MAD är ett mått på prognosfel. POA är ett mått på prognosförskjutning. Båda dessa prestandautvärderingstekniker kräver faktiska försäljningshistorikdata under en period som anges av dig. Perioden för den senaste historiken som används för utvärdering kallas en uthållningsperiod eller period med bästa passform. För att mäta prestanda för en prognosmetod, systemet: Använd prognosformulären för att simulera en prognos för historisk uthållighetsperiod. Gör en jämförelse mellan den faktiska försäljningsdata och den simulerade prognosen för hållbarhetsperioden. När du väljer flera prognosmetoder, förekommer samma process för varje metod. Flera prognoser beräknas för hållbarhetsperioden och jämfört med den kända försäljningshistoriken för samma period. Prognosmetoden som ger den bästa matchningen (bästa passformen) mellan prognosen och den faktiska försäljningen under hållbarhetsperioden rekommenderas för användning i planerna. Denna rekommendation är specifik för varje produkt och kan ändras varje gång du genererar en prognos. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. How to calculate Mean Absolute Deviation (MAD) Help please. Sedan maj 2005 har inköpsansvarig på ett varuhus använt ett 4-års glidande medelvärde för att prognostisera försäljningen under kommande månader. Försäljningsdata för månaderna januari till juli anges i tabellen. visa mer Sedan maj 2005 har inköpschefen på ett varuhus använt ett 4-års glidande medelvärde för att prognostisera försäljningen under kommande månader. Försäljningsdata för månaderna januari till juli anges i tabellen nedan. Beräkna den genomsnittliga absoluta avvikelsen (MAD) för de fyra årliga glidande genomsnittliga prognoserna. Prognosvärdena beräknas med en noggrannhet med två decimaler. Specify the MAD as a whole number by rounding. A Forecast Calculation Examples A.1 Forecast Calculation Methods Twelve methods of calculating forecasts are available. Most of these methods provide for limited user control. For example, the weight placed on recent historical data or the date range of historical data used in the calculations might be specified. The following examples show the calculation procedure for each of the available forecasting methods, given an identical set of historical data. The following examples use the same 2004 and 2005 sales data to produce a 2006 sales forecast. In addition to the forecast calculation, each example includes a simulated 2005 forecast for a three month holdout period (processing option 19 3) which is then used for percent of accuracy and mean absolute deviation calculations (actual sales compared to simulated forecast). A.2 Forecast Performance Evaluation Criteria Depending on your selection of processing options and on the trends and patterns existing in the sales data, some forecasting methods will perform better than others for a given historical data set. A forecasting method that is appropriate for one product may not be appropriate for another product. It is also unlikely that a forecasting method that provides good results at one stage of a products life cycle will remain appropriate throughout the entire life cycle. You can choose between two methods to evaluate the current performance of the forecasting methods. These are Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). Both of these performance evaluation methods require historical sales data for a user specified period of time. This period of time is called a holdout period or periods best fit (PBF). The data in this period is used as the basis for recommending which of the forecasting methods to use in making the next forecast projection. This recommendation is specific to each product, and may change from one forecast generation to the next. The two forecast performance evaluation methods are demonstrated in the pages following the examples of the twelve forecasting methods. A.3 Method 1 - Specified Percent Over Last Year This method multiplies sales data from the previous year by a user specified factor for example, 1.10 for a 10 increase, or 0.97 for a 3 decrease. Required sales history: One year for calculating the forecast plus the user specified number of time periods for evaluating forecast performance (processing option 19). A.4.1 Forecast Calculation Range of sales history to use in calculating growth factor (processing option 2a) 3 in this example. Sum the final three months of 2005: 114 119 137 370 Sum the same three months for the previous year: 123 139 133 395 The calculated factor 370395 0.9367 Calculate the forecasts: January, 2005 sales 128 0.9367 119.8036 or about 120 February, 2005 sales 117 0.9367 109.5939 or about 110 March, 2005 sales 115 0.9367 107.7205 or about 108 A.4.2 Simulated Forecast Calculation Sum the three months of 2005 prior to holdout period (July, Aug, Sept): 129 140 131 400 Sum the same three months for the previous year: 141 128 118 387 The calculated factor 400387 1.033591731 Calculate simulated forecast: October, 2004 sales 123 1.033591731 127.13178 November, 2004 sales 139 1.033591731 143.66925 December, 2004 sales 133 1.033591731 137.4677 A.4.3 Percent of Accuracy Calculation POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Mean Absolute Deviation Calculation MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677)3 12.75624 A.5 Method 3 - Last year to This Year This method copies sales data from the previous year to the next year. Required sales history: One year for calculating the forecast plus the number of time periods specified for evaluating forecast performance (processing option 19). A.6.1 Forecast Calculation Number of periods to be included in the average (processing option 4a) 3 in this example For each month of the forecast, average the previous three months data. January forecast: 114 119 137 370, 370 3 123.333 or 123 February forecast: 119 137 123 379, 379 3 126.333 or 126 March forecast: 137 123 126 379, 386 3 128.667 or 129 A.6.2 Simulated Forecast Calculation October 2005 sales (129 140 131)3 133.3333 November 2005 sales (140 131 114)3 128.3333 December 2005 sales (131 114 119)3 121.3333 A.6.3 Percent of Accuracy Calculation POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Absolute Deviation Calculation MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Method 5 - Linear Approximation Linear Approximation calculates a trend based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution, as long range forecasts are leveraged by small changes in just two data points. Required sales history: The number of periods to include in regression (processing option 5a), plus 1 plus the number of time periods for evaluating forecast performance (processing option 19). A.8.1 Forecast Calculation Number of periods to include in regression (processing option 6a) 3 in this example For each month of the forecast, add the increase or decrease during the specified periods prior to holdout period the previous period. Average of the previous three months (114 119 137)3 123.3333 Summary of the previous three months with weight considered (114 1) (119 2) (137 3) 763 Difference between the values 763 - 123.3333 (1 2 3) 23 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Average - value1 ratio 123.3333 - 11.5 2 100.3333 Forecast (1 n) value1 value2 4 11.5 100.3333 146.333 or 146 Forecast 5 11.5 100.3333 157.8333 or 158 Forecast 6 11.5 100.3333 169.3333 or 169 A.8.2 Simulated Forecast Calculation October 2004 sales: Average of the previous three months (129 140 131)3 133.3333 Summary of the previous three months with weight considered (129 1) (140 2) (131 3) 802 Difference between the values 802 - 133.3333 (1 2 3) 2 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Average - value1 ratio 133.3333 - 1 2 131.3333 Forecast (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 sales Average of the previous three months (140 131 114)3 128.3333 Summary of the previous three months with weight considered (140 1) (131 2) (114 3) 744 Difference between the values 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Forecast 4 -12.9999 154.3333 102.3333 December 2004 sales Average of the previous three months (131 114 119)3 121.3333 Summary of the previous three months with weight considered (131 1) (114 2) (119 3) 716 Difference between the values 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Average - value1 ratio 121.3333 - (-5.9999) 2 133.3333 Forecast 4 (-5.9999) 133.3333 109.3333 A.8.3 Percent of Accuracy Calculation POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mean Absolute Deviation Calculation MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Method 7 - Secon d Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a bX with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar. However, this method determines values for a, b, and c in the forecast formula Y a bX cX2 with the objective of fitting a curve to the sales history data. This method may be useful when a product is in the transition between stages of a life cycle. For example, when a new product moves from introduction to growth stages, the sales trend may accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). Therefore, this method is useful only in the short term. Forecast specifications: The formulae finds a, b, and c to fit a curve to exactly three points. You specify n in the processing option 7a, the number of time periods of data to accumulate into each of the three points. In this example n 3. Therefore, actual sales data for April through June are combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve will be fitted to the three values Q1, Q2, and Q3. Required sales history: 3 n periods for calculating the forecast plus the number of time periods required for evaluating the forecast performance (PBF). Number of periods to include (processing option 7a) 3 in this example Use the previous (3 n) months in three-month blocks: Q1(Apr - Jun) 125 122 137 384 Q2(Jul - Sep) 129 140 131 400 Q3(Oct - Dec) 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a bX cX2 (1) Q1 a bX cX2 (where X 1) a b c (2) Q2 a bX cX2 (where X 2) a 2b 4c (3) Q3 a bX cX2 (where X 3) a 3b 9c Solve the three equations simultaneously to find b, a, and c: Subtract equation (1) from equation (2) and solve for b (2) - (1) Q2 - Q1 b 3c Substitute this equation for b into equation (3) (3) Q3 a 3(Q2 - Q1) - 3c c Finally, substitute these equations for a and b into equation (1) Q3 - 3(Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2)2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 - 3(Q2 - Q1) 370 - 3(400 - 384) 322 c (Q3 - Q2) (Q1 - Q2)2 (370 - 400) (384 - 400)2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23)X2 January thru March forecast (X4): (322 340 - 368)3 2943 98 per period April thru June forecast (X5): (322 425 - 575)3 57.333 or 57 per period July thru September forecast (X6): (322 510 - 828)3 1.33 or 1 per period October thru December (X7) (322 595 - 11273 -70 A.9.2 Simulated Forecast Calculation October, November and December, 2004 sales: Q1(Jan - Mar) 360 Q2(Apr - Jun) 384 Q3(Jul - Sep) 400 a 400 - 3(384 - 360) 328 c (400 - 384) (360 - 384)2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percent of Accuracy Calculation POA (136 136 136) (114 119 137) 100 110.27 A.9.4 Mean Absolute Deviation Calculation MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Method 8 - Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a user specified factor, then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. The Flexible Method adds the capability to specify a time period other than the same period last year to use as the basis for the calculations. Multiplication factor. For example, specify 1.15 in the processing option 8b to increase the previous sales history data by 15. Base period. For example, n 3 will cause the first forecast to be based upon sales data in October, 2005. Minimum sales history: The user specified number of periods back to the base period, plus the number of time periods required for evaluating the forecast performance (PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Method 9 - Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, with the Weighted Moving Average you can assign unequal weights to the historical data. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so this makes WMA more responsive to shifts in the level of sales. However, forecast bias and systematic errors still do occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. For example, specify n 3 in the processing option 9a to use the most recent three periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but will be slow to recognize shifts in the level of sales. On the other hand, a small value for n (such as 3) will respond quicker to shifts in the level of sales, but the forecast may fluctuate so widely that production can not respond to the variations. The weight assigned to each of the historical data periods. The assigned weights must total to 1.00. For example, when n 3, assign weights of 0.6, 0.3, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Method 10 - Linear Smoothing This method is similar to Method 9, Weighted Moving Average (WMA). However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. As is true of all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. This is specified in the processing option 10a. For example, specify n 3 in the processing option 10b to use the most recent three periods as the basis for the projection into the next time period. The system will automatically assign the weights to the historical data that decline linearly and sum to 1.00. For example, when n 3, the system will assign weights of 0.5, 0.3333, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.12.1 Forecast Calculation Number of periods to include in smoothing average (processing option 10a) 3 in this example Ratio for one period prior 3(n2 n)2 3(32 3)2 36 0.5 Ratio for two periods prior 2(n2 n)2 2(32 3)2 26 0.3333.. Ratio for three periods prior 1(n2 n)2 1(32 3)2 16 0.1666.. January forecast: 137 0.5 119 13 114 16 127.16 or 127 February forecast: 127 0.5 137 13 119 16 129 March forecast: 129 0.5 127 13 137 16 129.666 or 130 A.12.2 Simulated Forecast Calculation October 2004 sales 129 16 140 26 131 36 133.6666 November 2004 sales 140 16 131 26 114 36 124 December 2004 sales 131 16 114 26 119 36 119.3333 A.12.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Method 11 - Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing the system assigns weights to the historical data that decline linearly. In exponential smoothing, the system assigns weights that exponentially decay. The exponential smoothing forecasting equation is: Forecast a(Previous Actual Sales) (1 - a) Previous Forecast The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. a is the weight applied to the actual sales for the previous period. (1 - a) is the weight applied to the forecast for the previous period. Valid values for a range from 0 to 1, and usually fall between 0.1 and 0.4. The sum of the weights is 1.00. a (1 - a) 1 You should assign a value for the smoothing constant, a. If you do not assign values for the smoothing constant, the system calculates an assumed value based upon the number of periods of sales history specified in the processing option 11a. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for a range from 0 to 1. n the range of sales history data to include in the calculations. Generally one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 3) was chosen in order to reduce the manual calculations required to verify the results. Exponential smoothing can generate a forecast based on as little as one historical data point. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.13.1 Forecast Calculation Number of periods to include in smoothing average (processing option 11a) 3, and alpha factor (processing option 11b) blank in this example a factor for the oldest sales data 2(11), or 1 when alpha is specified a factor for the 2nd oldest sales data 2(12), or alpha when alpha is specified a factor for the 3rd oldest sales data 2(13), or alpha when alpha is specified a factor for the most recent sales data 2(1n), or alpha when alpha is specified November Sm. Avg. a(October Actual) (1 - a)October Sm. Avg. 1 114 0 0 114 December Sm. Avg. a(November Actual) (1 - a)November Sm. Avg. 23 119 13 114 117.3333 January Forecast a(December Actual) (1 - a)December Sm. Avg. 24 137 24 117.3333 127.16665 or 127 February Forecast January Forecast 127 March Forecast January Forecast 127 A.13.2 Simulated Forecast Calculation July, 2004 Sm. Avg. 22 129 129 August Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136.3333 133.6666 October, 2004 sales Sep Sm. Avg. 133.6666 August, 2004 Sm. Avg. 22 140 140 September Sm. Avg. 23 131 13 140 134 October Sm. Avg. 24 114 24 134 124 November, 2004 sales Sep Sm. Avg. 124 September 2004 Sm. Avg. 22 131 131 October Sm. Avg. 23 114 13 131 119.6666 November Sm. Avg. 24 119 24 119.6666 119.3333 December 2004 sales Sep Sm. Avg. 119.3333 A.13.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Method 12 - Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed averaged adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for alpha range from 0 to 1. b the smoothing constant used in calculating the smoothed average for the trend component of the forecast. Valid values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast a and b are independent of each other. They do not have to add to 1.0. Minimum required sales history: two years plus the number of time periods required for evaluating the forecast performance (PBF). Method 12 uses two exponential smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal factor. A.14.1 Forecast Calculation A) An exponentially smoothed average MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Evaluating the Forecasts You can select forecasting methods to generate as many as twelve forecasts for each product. Each forecasting method will probably create a slightly different projection. When thousands of products are forecast, it is impractical to make a subjective decision regarding which of the forecasts to use in your plans for each of the products. The system automatically evaluates performance for each of the forecasting methods that you select, and for each of the products forecast. You can choose between two performance criteria, Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a user specified period of time. This period of recent history is called a holdout period or periods best fit (PBF). To measure the performance of a forecasting method, use the forecast formulae to simulate a forecast for the historical holdout period. There will usually be differences between actual sales data and the simulated forecast for the holdout period. When multiple forecast methods are selected, this same process occurs for each method. Multiple forecasts are calculated for the holdout period, and compared to the known sales history for that same period of time. The forecasting method producing the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in your plans. This recommendation is specific to each product, and might change from one forecast generation to the next. A.16 Mean Absolute Deviation (MAD) MAD is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD has shown to be the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, there is a simple mathematical relationship between MAD and two other common measures of distribution, standard deviation and Mean Squared Error: A.16.1 Percent of Accuracy (POA) Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently two low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high, would be an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. Error Actual - Forecast When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, it is not so important to eliminate forecast errors as it is to generate unbiased forecasts. However in service industries, the above situation would be viewed as three errors. The service would be understaffed in the first period, then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. The summation over the holdout period allows positive errors to cancel negative errors. When the total of actual sales exceeds the total of forecast sales, the ratio is greater than 100. Of course, it is impossible to be more than 100 accurate. When a forecast is unbiased, the POA ratio will be 100. Therefore, it is more desirable to be 95 accurate than to be 110 accurate. The POA criteria select the forecasting method that has a POA ratio closest to 100. Scripting on this page enhances content navigation, but does not change the content in any way. Weighted Moving Average Forecast and MAD in EXCEL The problem states that the manager of the Carpet City outlet needs to make an accurate forecast of the demand for Soft Shag carpet (it biggest seller). Om chefen inte beställer tillräckligt mycket matta från mattan, kommer kunderna att köpa sina matta från en av Carpet City många konkurrenter. Chefen har samlat in följande efterfrågningsdata under de senaste åtta månaderna. Månadens efterfrågan på Soft Shag Matta 1 000 m 1 8 2 12 3 7 4 9 5 15 6 11 7 10 8 12 Beräkna en 3 månaders glidande medelprognos för månad 4 till 9 Beräkna en vägd 3 månaders glidande medelprognos för månaderna 4 till 9. Tilldela vikter av .53. 33 och .12 till månaden i följd, från och med den senaste månaden. Jämför de två prognoserna med hjälp av MAD, vilken prognos tycks vara mer exakt. Lösningsförhandsvisning Vänligen se bilagan Solution. xlsx för arbetet och. Lösningsöversikt Ett 3 månaders rörligt medelprognos och ytterligare 3 månaders vägtryckande medelprognos, med olika utjämningsvägningsfaktorer, har utförts i Excel. Prognosfel (MAD) har beräknats och de två prognoserna har jämförts med dessa MAD-värden. Add Solution to Cart Remove from Cart
Comments
Post a Comment